Package: konfound 1.0.3

Joshua M Rosenberg

konfound: Quantify the Robustness of Causal Inferences

Statistical methods that quantify the conditions necessary to alter inferences, also known as sensitivity analysis, are becoming increasingly important to a variety of quantitative sciences. A series of recent works, including Frank (2000) <doi:10.1177/0049124100029002001> and Frank et al. (2013) <doi:10.3102/0162373713493129> extend previous sensitivity analyses by considering the characteristics of omitted variables or unobserved cases that would change an inference if such variables or cases were observed. These analyses generate statements such as "an omitted variable would have to be correlated at xx with the predictor of interest (e.g., the treatment) and outcome to invalidate an inference of a treatment effect". Or "one would have to replace pp percent of the observed data with nor which the treatment had no effect to invalidate the inference". We implement these recent developments of sensitivity analysis and provide modules to calculate these two robustness indices and generate such statements in R. In particular, the functions konfound(), pkonfound() and mkonfound() allow users to calculate the robustness of inferences for a user's own model, a single published study and multiple studies respectively.

Authors:Joshua M Rosenberg [aut, cre], Ran Xu [ctb], Qinyun Lin [ctb], Spiro Maroulis [ctb], Sarah Narvaiz [ctb], Kenneth A Frank [ctb], Wei Wang [ctb], Yunhe Cui [ctb], Gaofei Zhang [ctb], Xuesen Cheng [ctb], JiHoon Choi [ctb], Guan Saw [ctb]

konfound_1.0.3.tar.gz
konfound_1.0.3.zip(r-4.5)konfound_1.0.3.zip(r-4.4)konfound_1.0.3.zip(r-4.3)
konfound_1.0.3.tgz(r-4.5-any)konfound_1.0.3.tgz(r-4.4-any)konfound_1.0.3.tgz(r-4.3-any)
konfound_1.0.3.tar.gz(r-4.5-noble)konfound_1.0.3.tar.gz(r-4.4-noble)
konfound_1.0.3.tgz(r-4.4-emscripten)konfound_1.0.3.tgz(r-4.3-emscripten)
konfound.pdf |konfound.html
konfound/json (API)
NEWS

# Install 'konfound' in R:
install.packages('konfound', repos = c('https://konfound-project.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/konfound-project/konfound/issues

Pkgdown site:https://konfound-it.org

Datasets:

On CRAN:

7.06 score 15 stars 42 scripts 1.0k downloads 5 exports 71 dependencies

Last updated 2 months agofrom:ee77161b98. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 07 2025
R-4.5-winOKFeb 07 2025
R-4.5-macOKFeb 07 2025
R-4.5-linuxOKFeb 07 2025
R-4.4-winOKFeb 07 2025
R-4.4-macOKFeb 07 2025
R-4.3-winOKFeb 07 2025
R-4.3-macOKFeb 07 2025

Exports:konfoundmkonfoundpkonfoundtkonfoundtkonfound_fig

Dependencies:backportsbootbroombroom.mixedclicodacodetoolscolorspacecowplotcpp11crayonDerivdigestdoBydplyrfansifarverforcatsfurrrfuturegenericsggplot2ggrepelglobalsgluegtableisobandlabelinglatticelavaanlifecyclelistenvlme4magrittrMASSMatrixmgcvmicrobenchmarkminqamnormtmodelrmunsellnlmenloptrnumDerivparallellypbivnormpbkrtestpillarpkgconfigppcorpurrrquadprogR6rbibutilsRColorBrewerRcppRcppEigenRdpackreformulasrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

Introduction to konfound

Rendered fromintroduction-to-konfound.Rmdusingknitr::rmarkdownon Feb 07 2025.

Last update: 2024-12-04
Started: 2019-03-27